Fertilizer application method and cropping system influence on release of fixed $\mathrm{NH_4}^+$

G. D. Eudoxie and G. A. Gouveia Department of Food Production, Faculty of Sciences and Agriculture, University of the West Indies, St. Augustine Campus, Trinidad.

Fixed NH₄⁺, which historically has been seen only as a sink for available N is shown to also act as a source for N. Release of fixed NH₄⁺ fractions along with N dynamics were investigated over two years in a randomized block experiment on a micaceous loam under three cropping systems. At the end of two years all cropping systems showed loss of fixed NH₄⁺, particularly the strongly fixed fraction. Tanner grass showed a lower concentration of NO₃⁻ and strongly fixed NH₄⁺ in comparison to corn-bare cropping system at 275 days after fertilization (DAF). Banding resulted in a greater strongly fixed NH₄⁺ and NO₃⁻ concentration at 17 and 73 DAF respectively. Corn dry matter (DM) for the 1st harvest was significantly lower for control plots. Release of fixed NH₄⁺ indicated by lower weakly fixed NH₄⁺ fractions at the 3rd and 5th sampling did not further influence plant N or DM. The influence shown by these crops on fixed NH₄⁺ dymanics reinforces the importance of that fraction as a potential N source.

Palabras Claves/Key Words: Fixed NH4+ release, available nitrogen dynamics, cropping system, method of application