The potential Bio-energy crops in the Renewable Energy thrust for the Caribbean

Puran Bridgemohan.

Crop Scientist

Biosciences, Agriculture, and Food Technology, Waterloo Research Centre, Point Lisas Campus The University of Trinidad and Tobago,.

paran bridge mohan@att.eda.tt

Bio – energy power

Bio-energy crops renewable source of bio-diesel

bio-degradable and non-toxic

- □ low emission profiles,
- environmentally beneficial,
- Substitute petro-diesel
- high calorific value
- improved lubricity

Bio-energy crops renewable source of bio-diesel

lack of sulphur

 \Box CO₂ – photosynthesis

oxygenated fuel

complete firing,

reduced engine emission

Low threat to global warming

Bio - energy Crops

- Minimum input in vegetative phase,
- No competition [food production or food grade oils]
- cultivable on marginal lands
- Zero soil fertility demands
- prevents desertification and erosion
- no toxicity problem

Rationale

cost of fossil fuel

- negative environmental issues
- forces non- sugar producing Caribbean
 Small Island States (SIDS),

Need to seek alternative sources

- ethanol production
- Solar ng
- Wind
- Thermal
- co-generation
- Bio-diesel

An agro-energy evaluation of three (3) bio-energy crops in the Caribbean, *viz*.

📓 drumstick vegetable (moringa oliefera),

physics nut (jatropha curcas), and

🔊 🔹 castor oil (*rincinus communis*).

Experimental

- moringa, jatropha, and castor oil density of 2,500plants.ha⁻¹ on cambered beds.
- rain-fed and no chemical inputs [fertilizer, insecticides or herbicides]
- All operations manually.
- Crop agronomic, morphological and phenology

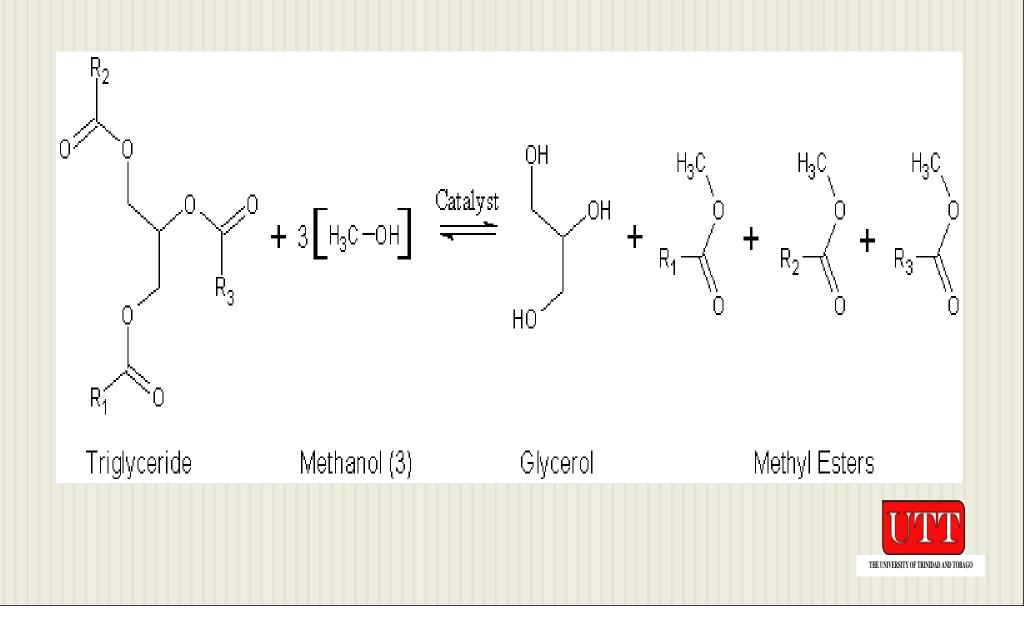
Extraction Method

hydraulic press at 2500psi.
 [Fred Carver Inc. Hydraulic Equipment, Wisconsin]

- Screw Press
- Electrolux

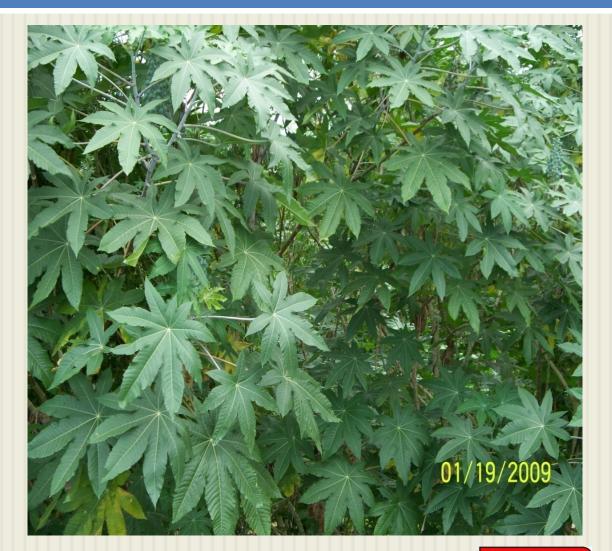
Analyses

Proximate


- AOAC for DM, ash, CP, crude fibre (CF) and ether extract (AOAC, 1984),
- NDF (Goering and van Soest, 1970),
- ADF (Van Soest et al., 1991).

statistical

 transformation if required, and data analysis conducted using the MINITAB 15 statistical package (2007)

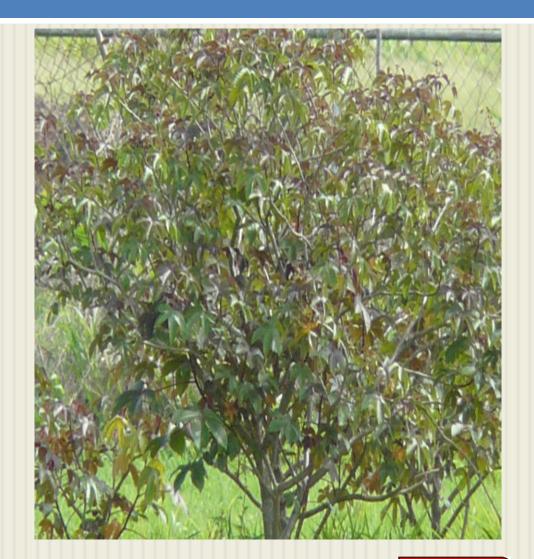


Transesterifcation

Bio-energy Crops

Rincus communis

Bio-energy Crops


Moringa oliefera

Bio-energy Crops

Jatropha Carcus

Preparation for oil extraction

Grinding all 3 seedsWith hand mill

Preparation for oil extraction

- □ freezing
- Crushing
- Heating
- Pressing
- Settling / filtration
- purification

Oil cake and virgin oil extraction Equipment screw press

Oil cake and virgin oil extraction Equipment hydraulic press

Oil cake and virgin oil extraction Equipment manual press

Agronomic and Phenological Characteristics

Crop Phenology	m.oliefera	j.carcus	r.comunis
Days to germination	7	9	4
Days from sowing to pod	180	90	140
Nos. of flowering flushes/ year	10	3	3
Nos. of flower [poll] per cluster	21	19.0 [2.83]	19 [1.14]
Nos. of flower cluster per tree	25 to 36	34 [1.27]	23.2 [7.89]
Nos. of fertilized pod/ cluster	2 to 4	28 [2.02]	16.96 [4.89]
Nos. new pod/tree/month	24 to 27	30 [3.01]	29 [6.34]
Length of flowering harvest[DAS]	45	82	120
Nos. harvest per year	9 to 10	3 to 4	2 to 3
Nos harvestable fruit pods / tree/ flush	30 [4.78]	646 [12.25]	408

Yield Characteristics *m.oliefera*

Yield Characteristics	m.oliefra
Pod Yield . tree ⁻¹ . yr ⁻¹	750
Nos. seeds . pod ⁻¹	20
Weight 100 seed [g]	35
Seed yield kg.tree ⁻¹ .yr -	5.25
Seed yield t.ha ⁻¹ .yr ⁻¹	13.12
Oil yield [38%CF] t.ha ⁻¹ .	5.01

Yield Characteristics r.comunis

Yield Characteristics	r.comunis	
Pod Yield . tree ⁻¹ . yr ⁻¹	1020	
Nos. seeds . pod ⁻¹	4	
Weight 100 seed [g]	11.36	
Seed yield kg.tree ⁻¹ .yr ⁻¹	4.364	
Seed yield t.ha ⁻¹ .yr ⁻¹	1.5	
Oil yield [40%CF] t.ha ⁻¹ .	2.52.	

Yield Characteristics *j.carcus*

Yield Characteristics	j.carcus
Pod Yield . tree ⁻¹ . yr ⁻¹	2584
Nos. seeds . pod ⁻¹	4
Weight 100 seed [g]	3.64
Seed yield kg.tree ⁻¹ .yr ⁻¹	0.376
Seed yield t.ha ⁻¹ .yr ⁻¹	0.96
Oil yield [50% CF] t.ha ⁻¹ .	0.68

Yield Characteristics	m.oliefra	j.carcus	r.comunis
Pod Yield . tree ⁻¹ . yr ⁻¹	750	2584	1020
Nos. seeds . pod ⁻¹	20	4	4
Weight 100 seed [g]	35	3.64	11.36
Seed yield kg.tree ⁻¹ .yr ⁻¹	5.25	0.376	4.364
Seed yield t.ha ⁻¹ .yr ⁻¹	13.12	0.96	13.90
Oil yield	5.01	.54 to.68	2.52

Fatty Acid	m.oliefra ¹	j.carcus ²	r.comunis ³	EL-V
Palmitic	1.1	15.6	1.2	
Stearic	5.9	6.2	4.8	
Oleic	72.9	40.2.	3.87	
Linoleic	0.6	36.3	4.4	
Behenic	7.3	-	-	
Myristic	-	-	90.25	
ricinoleic	0.1	-	-	
				No. 10 March

¹ After Lalas and Tsaknis, 2002 ² After (open 2008 NPL 072)

Castor oil and waste product

CASTOR OIL (275ml) WITH GAKES (2kg)

First Expressed bio-fuel

First Expressed Moringa oil

Cakes and oil

CONCLUSION

moringa oliefera – 5.01 Oil yield [38%CF] t.ha⁻¹.

Bio-diesel

- Crude protein 42.8%
 - Animal feed
- LISA no agriculural input demand
- Potential source of organic lubricant and fuel additive

Sugar cane #1 renewable Co-generation Power

