## □ CP-11

## Napiergrass (Pennisetum purpureum Schum.) triploid hybrids potential for biofuel feedstock in the caribbean basin

Elide Valencia, Rafael Ramos-Santana, Luis Almodovar and Fredy Altpeter University of Puerto Rico, Mayagüez, Call Box 9000, Mayagüez, PR, 00681 and University of Florida, Gainesville, IFAS, Fl

Napiergrass (*Pennisetum purpureum* Schum.) is considered the best perennial adapted feedstock for biofuel production in the southern US. In the Caribbean and elsewhere, it has potential for invasiveness. Because its propagation is mainly asexual, flowering is not necessary and its suppression may limit its invasiveness. The objective of this study was to evaluate 150 (entries) sterile, triploid, interspecific hybrids between napiergrass (tetraploid) and pearl millet (diploid) developed by the University of Florida breeding program for morphological characteristics and biomass. The study was conducted at the Isabela substation of the Agricultural Experiment Station, University of Puerto on an Oxisol (Cotito series; pH 5.5). Phytomers (15-cm) were planted in plots (2.5 x 1-m) on well prepared soils in November 2009. The design was a randomized complete block with three replicates. Emergence and date of flowering was monitored weekly and total tiller emergence determined at 60-d post planting. At 150-d after planting, stem diameter (randomly selected plants within plots), leaf width (mm) and biomass (Mg ha-1) was determined by harvesting the whole plot and clipping tillers at 15-cm height. Data was analyzed using analysis of variance (SAS, 1999). Because Napiergrass is photosensitive in the tropics, inflorescence was observed as soon as tillers emerge and no difference was detected among triploid hydrids. Flowering continued throughout the establishment phase (5-mo). There were differences (P<0.05) in tiller development among triploids (10 tillers plant for entry 4). Entries also differed in stem diameter (P<0.05; 13mm for entry 30), but not on leaf width (10-mm). Maximum biomass production was observed on entries 145, 121, and 141 with biomass yield of 35, 19.3 and 14.3 Mg ha-1, respectively. Yields were not as high as expected particularly in the aftermath. In summary, triploids are highly photosensitive and although it flowers profusely no viable seeds were observed. Biomass will continuously be monitored during the summer months of 2010 to assess persistence and yield at 90-d harvest.

 $\textbf{Key Words:} \ \text{Napiergrass, feedstock, biofuel, and triploid hybrids.}$